CNN
约 77 个字 预计阅读时间不到 1 分钟
Convolution Layer
Without padding: Feature maps shrink with each layer.
Input: W Filter: K Output : W-K+1
padding = 1,usually zero-padding.
Why zero padding? it breaks the translational equivalent(平移不变性)
Output: W-K+1+2P
Same padding: Set P = \(\frac{K-1}{2}\) to make the out put same as input.
Receptive Fields :
Each successive convolution adds K-1 to the receptive field size
With L layers the receptive field size is 1+L*(K-1)
With Stride:(W-K+2P)/S + 1